logo
  • Home
  • Links
    APR Prediction Models GAP (Generalized Aggregation Proneness) ANuPP (Prediciton of Nucleating APRs) VLAmY-Pred (Predicting antibody light chain aggregation) Aggregation Kinetics Prediction Models AggreRATE-Disc (Classifying Aggregating Point Mutation) AggreRATE-Pred (Predicting Aggregation Rate for Point Mutation) AbsoluRATE (Predicting Absolute aggregation rate) Amylo-Pipe (Comprehensive aggregation prediction)
  • Tutorial
  • Statistics
  • Download
  • Contact Us
  • Home
  • Tutorial
  • Statistics
  • Download
  • Contact Us
  • Links
    • APR Prediction Models:
    • GAP (Generalized Aggregation Proneness)
    • ANuPP (Prediciton of Nucleating APRs)
    • VLAmY-Pred (Predicting antibody light chain aggregation)
    • Aggregation Kinetics Prediction Models:
    • AggreRATE-Disc (Classifying Aggregating Point Mutation)
    • AggreRATE-Pred (Predicting Aggregation Rate for Point Mutation)
    • AbsoluRATE (Predicting Absolute aggregation rate)
    • Amylo-Pipe (Comprehensive aggregation prediction)

References:

CPAD 2.0
Coming Soon
CPAD
Thangakani, A. M., Nagarajan, R., Kumar, S., Sakthivel, R., Velmurugan, D., & Gromiha, M. M. (2016). CPAD, curated protein aggregation database: a repository of manually curated experimental data on protein and peptide aggregation. PLoS One, 11(4), e0152949.
GAP
Thangakani, A. M., Kumar, S., Nagarajan, R., Velmurugan, D., & Gromiha, M. M. (2014). GAP: towards almost 100 percent prediction for β-strand-mediated aggregating peptides with distinct morphologies. Bioinformatics, 30(14), 1983-1990.
NuAPRPred
Coming Soon
AggreRATE-Disc
Rawat, P., Kumar, S., & Gromiha, M. M. (2018). An in-silico method for identifying aggregation rate enhancer and mitigator mutations in proteins. Int J Biol Macromol, 118, 1157-1167.
AggreRATE-Pred
Coming Soon
AmyLoad
Wozniak, P. P., & Kotulska, M. (2015). AmyLoad: website dedicated to amyloidogenic protein fragments. Bioinformatics, 31(20), 3395-3397.
AmyPro
Varadi, M., De Baets, G., Vranken, W. F., Tompa, P., & Pancsa, R. (2017). AmyPro: a database of proteins with validated amyloidogenic regions. Nucleic acids research, 46(D1), D387-D392.
Waltz-DB
Beerten, J., Van Durme, J., Gallardo, R., Capriotti, E., Serpell, L., Rousseau, F., & Schymkowitz, J. (2015). WALTZ-DB: a benchmark database of amyloidogenic hexapeptides. Bioinformatics, 31(10), 1698-1700.
TANGO
Fernandez-Escamilla, A. M., Rousseau, F., Schymkowitz, J., & Serrano, L. (2004). Prediction of sequence-dependent and mutational effects on the aggregation of peptides and proteins. Nature biotechnology, 22(10), 1302.
AGGRESCAN
Conchillo-Solé, O., de Groot, N. S., Avilés, F. X., Vendrell, J., Daura, X., & Ventura, S. (2007). AGGRESCAN: a server for the prediction and evaluation of" hot spots" of aggregation in polypeptides. BMC bioinformatics, 8(1), 65.
PASTA 2.0
Walsh, I., Seno, F., Tosatto, S. C., & Trovato, A. (2014). PASTA 2.0: an improved server for protein aggregation prediction. Nucleic acids research, 42(W1), W301-W307.
logo-iit

CPAD 2.0 database is developed on Django, a python-based web framework.

Any queries related to the database please contact:
Puneet Rawat: puneet021192@gmail.com Prabakaran R: rpkarandev@gmail.com
logo-iit
Developed by: Protein Bioinformatics Lab, Department of Biotechnology, Indian Institute of Technology, Madras, Chennai, India.
_jCqyTaHC9LS8khOM7c-szGYpF2YRvpsB7612y1JQcE=.html