Home
Links
APR Prediction Models
GAP (Generalized Aggregation Proneness)
ANuPP (Prediciton of Nucleating APRs)
V
L
AmY-Pred (Predicting antibody light chain aggregation)
Aggregation Kinetics Prediction Models
AggreRATE-Disc (Classifying Aggregating Point Mutation)
AggreRATE-Pred (Predicting Aggregation Rate for Point Mutation)
AbsoluRATE (Predicting Absolute aggregation rate)
Amylo-Pipe (Comprehensive aggregation prediction)
Tutorial
Statistics
Download
Contact Us
Home
Tutorial
Statistics
Download
Contact Us
Links
APR Prediction Models:
GAP (Generalized Aggregation Proneness)
ANuPP (Prediciton of Nucleating APRs)
V
L
AmY-Pred (Predicting antibody light chain aggregation)
Aggregation Kinetics Prediction Models:
AggreRATE-Disc (Classifying Aggregating Point Mutation)
AggreRATE-Pred (Predicting Aggregation Rate for Point Mutation)
AbsoluRATE (Predicting Absolute aggregation rate)
Amylo-Pipe (Comprehensive aggregation prediction)
References:
CPAD 2.0
Coming Soon
CPAD
Thangakani, A. M., Nagarajan, R., Kumar, S., Sakthivel, R., Velmurugan, D., & Gromiha, M. M. (2016). CPAD, curated protein aggregation database: a repository of manually curated experimental data on protein and peptide aggregation. PLoS One, 11(4), e0152949.
GAP
Thangakani, A. M., Kumar, S., Nagarajan, R., Velmurugan, D., & Gromiha, M. M. (2014). GAP: towards almost 100 percent prediction for β-strand-mediated aggregating peptides with distinct morphologies. Bioinformatics, 30(14), 1983-1990.
NuAPRPred
Coming Soon
AggreRATE-Disc
Rawat, P., Kumar, S., & Gromiha, M. M. (2018). An in-silico method for identifying aggregation rate enhancer and mitigator mutations in proteins. Int J Biol Macromol, 118, 1157-1167.
AggreRATE-Pred
Coming Soon
AmyLoad
Wozniak, P. P., & Kotulska, M. (2015). AmyLoad: website dedicated to amyloidogenic protein fragments. Bioinformatics, 31(20), 3395-3397.
AmyPro
Varadi, M., De Baets, G., Vranken, W. F., Tompa, P., & Pancsa, R. (2017). AmyPro: a database of proteins with validated amyloidogenic regions. Nucleic acids research, 46(D1), D387-D392.
Waltz-DB
Beerten, J., Van Durme, J., Gallardo, R., Capriotti, E., Serpell, L., Rousseau, F., & Schymkowitz, J. (2015). WALTZ-DB: a benchmark database of amyloidogenic hexapeptides. Bioinformatics, 31(10), 1698-1700.
TANGO
Fernandez-Escamilla, A. M., Rousseau, F., Schymkowitz, J., & Serrano, L. (2004). Prediction of sequence-dependent and mutational effects on the aggregation of peptides and proteins. Nature biotechnology, 22(10), 1302.
AGGRESCAN
Conchillo-Solé, O., de Groot, N. S., Avilés, F. X., Vendrell, J., Daura, X., & Ventura, S. (2007). AGGRESCAN: a server for the prediction and evaluation of" hot spots" of aggregation in polypeptides. BMC bioinformatics, 8(1), 65.
PASTA 2.0
Walsh, I., Seno, F., Tosatto, S. C., & Trovato, A. (2014). PASTA 2.0: an improved server for protein aggregation prediction. Nucleic acids research, 42(W1), W301-W307.